Mechanisms of Enhanced Antigen Delivery to Murine Dendritic Cells by the Cationic Liposomes
نویسندگان
چکیده
There is an increased demand for vaccines to prevent and/or treat illness and mortality caused by the infectious diseases. We have recently established that liposomes composed of cationic lipids act as adjuvant for nasal vaccine formulation. However, the molecular mechanism(s) behind the adjuvant effect remain unrevealed. To this end, we have studied the enhancement of antigen uptake by murine dendritic cell line, DC2.4 cells, by the cationic liposomes and the specific pathways involved in the process. We have observed that the uptake of ovalbumin (OVA) into DC2.4 cells is greatly increased when co-cultured with the cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-chol). However, this enhancement was blocked by pretreatment of DC2.4 cells with chlorpromazine and methyl-β-cyclodextrin, indicating the involvement of clathrinand caveolin-independent lipid raft-dependent endocytic pathways in the process. Our results implied, at least in part, that enhanced uptake of antigens induced by the cationic liposomes could be a possible mechanism for the induction of immune responses. Although further studies are needed to understand the precise mechanisms behind the adjuvant effects of DOTAP/DC-chol liposome, this approach is quite useful for the development of vaccine system to combat various diseases.
منابع مشابه
The role of nanoliposome bilayer composition containing soluble leishmania antigen on maturation and activation of dendritic cells
Objective(s): Dendritic cells (DCs) play a critical role in activation of T cell responses. Induction of type1 T helper (Th1) immune response is essential to generate protective immunity against cutaneous leishmaniasis. The intrinsic tendency of liposomes to have interaction with antigen-presenting cells is the main rationale to utilize liposomes as antigen carriers. In the present study, the e...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملCationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens
Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation - the process by which APCs internalize extracellular protein ...
متن کاملFormulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملالقای سلولهای دندریتیک تولروژن موشی با تنظیم کاهشی ملکول کمک تحریکی CD40 با استفاده از وکتور لنتی ویروس
Induction of Tolerogenic Murine Dendritic Cells by Downregulating the Co-stimulatory Molecule of CD40 Using Lentivirus Vector Mahmoodzadeh A1, Pourfatollah AA1, Karimi MH2, Moazzeni SM1 1Dept. of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2Transplantation Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Correspond Aut...
متن کامل